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I. Phys.: Condens. Matter 5 (1993) 8983-8998. Rinred in the UK 

Solitonic excitations in the Haldane phase of an S = 1 chain 

G Fith and J SBlyom 
Research Institute for Solid State Physics, H-1525 Budapest PO Box 49. Hungary 

Received 23 June 1993 

Abstract We study low-lying excialions io UE I D  S = 1 antiferromag!mic valence-bond-solid 
(VFS) model. In a numerical calculation on finite systems the lowest excitations are found to 
form a discrete triplet branch. separated from the higher-lying continuum. The dispersion of 
ulese triplet excitations can be satisfactorily repmdueed by assuming appmximale wavefunctions. 
These wavefunctions are shown to comapond to moving hidden domain walls. i.e. to one-soliton 
excitations, 

1. Introduction 

It was almost a decade ago that Haldane [l] conjectured the existence of a new type of 
ground state for isotropic Heisenberg antiferromagnets (HAF) of integer spin S. The Haldane 
phase was proposed to be characterized by a unique disordered ground state with exponential 
decay of the correlation functions and a finite energy gap to the excited states. Since then 
one-dimensional quantum spin chains with S = 1 have been studied intensively and it is 
claimed that the gapful behaviour is a generic feature of integer-spin models [2]. 

The first rigorous example of an S = 1 antiferromagnetic model with Haldane phase 
was given by Affleck and co-workers [3]. They showed that the S = 1 isotropic bilinear- 
biquadratic model defined by the Hamiltonian 

has a short-range valence-bond-solid ground state for B = 1/3 (the VBS or AKLT model). At 
that point hj(1/3)  is a special projection operator, which projects out the quintuplet state 
of the two neighbouring spins, and which is positive semi-definite. Therefore, a state Sa for 
which h, D = 0 for any j is necessarily a ground state with ground-state energy E G ~  = 0. 
Such an Sa state could be constructed using nearest-neighbour valence bonds. They were 
also able to prove rigorously [3] that in the infinite-chain limit this state (i) is the only 
ground state, (ii) is separated by a finite gap from the excited states and (iii) the two-point 
correlation functions decay exponentially. 

According to Haldane's conjecture such a phase should not appear for half-integer 
values of the spin. This was proven rigorously by Affleck and Lieb 141 and independently 
by Kolb [5].  It was shown for a wide class of models that in the case when the ground 
state is a spin singlet, the energy spectrum as a function of momentum k is symmetric under 
reflections with respect to k = mn/2 (m integer), and therefore the ground state should be 
at least doubly degenerate. 

0953-8984/93/488983+16$07,50 0 1993 IOP Publishing Lid a983 



8984 C Fdth and J Sdlyom 

A similar proof fails in the integer4 case, allowing for the existence of a unique singlet 
ground state [4,5]. The excitation spectrum is in general symmetric with respect to k = mz 
only. Of course, higher symmetry can also appear in integer4 chains as, for example, in 
the spontaneously dimerized phase of the general bilinear-biquadratic S = 1 model [6]. 

The S = 1 bilinear-biquadratic model is integrable [7] at the critical point fl  = 1 which 
separates the dimerized phase from the Haldane phase. Although the spin is an integer, 
at this point the excitations can be described in exactly the same way as for the spin-l/Z 
HAP. More generally, it has been known since the work of Faddeev and Takhtajan [7] that 
there are integrablespin models for arbitrary S in which the elementary excitations are in 
fact spin-I/Z solitons with a dispersion independent of the spin length S. The observable 
excitations are composite particles, since for topological reasons the solitons can only appear 
in singlet or triplet pairs. As the energy of such a soliton pair can be described by two 
parameters, the excitations form a continuum in momentum space. 

Away from the integrable point, where the symmetry properties of the excitation spectra 
are, different for integer and half-integer S, the above-mentioned picture of composite 
excitations may not hold. In this paper we will study this problem. 

We will restrict ourselves to the S = 1 case, where the non-integrability appears in the 
most dramatic way in the Haldane phase. We will show that the lowest excitations are real 
spin-I one-particle excitations which cannot be decomposed into pairs of spin-l/Z solitons. 
These triplet excitations are, however, not usual antiferromagnons but rather some sort of 
hidden spin-1 solitons. 

The solitonic nature of the excitations of the integer-spin models was predicted by 
Haldane. This assumption became less astonishing after the discovery of the hidden order 
in the Haldane phase. Recently, in a very inspiring work, den Nijs and Rommelse [8] have 
introduced a non-local string operator U; defined by 

They argued that, although in the Haldane phase the ground state is disordered in the 
conventional sense, it  has a hidden long-range order that could be characterized by the 
string order parameter 

(Y = x ,  y ,  z (3) 

where H ( . ) H  denotes the expectation value in the ground state of the Hamiltonian H. 
This prediction was later verified numerically by several authors [91. The appearance of 

the hidden long-range order was further discussed by Kennedy and Tasaki [IO]. They 
showed, using a non-local unitary transformation, that Ozw > 0 corresponds to the 
spontaneous breaking of a hidden ZQ x ZQ symmetry of the model. Similarly, the fact 
that the four lowest states of an open chain are exponentially close to each other is also 
a consequence of this broken symmetry. It is generally expected that the breaking of a 
discrete symmetry in the ground state leads to an excitation gap since Goldstone bosons 
do not appear. Excitations of the model can then be thought of as some sort of (hidden) 
domain walls, separating regions with different ground states. This picture was made more 
explicit by Elstner and Mikeska [ I l l ,  who used spin-zero defects [I21 to disorder the 
antiferromagnetic state. The spin-zero defects are in fact solitons. One of the main goals 
of this paper is to further examine this problem. 
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We will use numerical and analytical methods to study the low-lying excitations in the 
@ = 113 case. Beside the fact that the ground state of the VBS model can be constructed 
analytically, there is another good reason to focus on this model. In a went study of the 
general bilinear-biquadratic model of (1). we observed [6] that the convergence of various 
finite-size estimates to their thermodynamic limit is extremely fast in the close vicinity of 
@ = 1/3. This is certainly not true for general @. Moving away from 6 = 113, finite-size 
corrections become stronger and one must consider longer and longer chains in order to see 
the real asymptotic behaviour. The rapid convergence at the VBS point may not be very 
surprising if we remember that at this point in the ground state only first-neighbour valence 
bonds ate present and the ground-state energy density becomes independent of the chain 
length. Although the excited states do show some dependence on N,  this is found to be 
exponentially small for the most relevant levels. Therefore, extrapolation from finite-size 
calculations allows one to draw quite reliable conclusions about the spectrum, and it can be 
compared directly to the analytical (variational) results. 

After a detailed numerical analysis of the spectrum, we will study trial wavefunctions 
for the elementary excitations and illustrate their solitonic nature. Since the Haldane phase 
at @ = 0 is believed to be in the same universality class as the VBS model at p = 113. our 
finding should be qualitatively correct for the usual HAF. 

The layout of the paper is as follows. In section 2 we present our numerical results. 
Seaion 3 contains the analysis of two seemingly different trial wavefunctions and their 
equivalence is shown. The elementary excitations are argued to be triplet bonds in the 
VBS structure. In section 4, we recall the non-local unitary transformation of KeMedy and 
Tasaki. In section 5 the trial wavefunctions for the excitations a* studied further using this 
transformation. Thus their domain wall nature becomes explicit. Finally, in section 6 we 
summarize our results. 

2. Numerical results 

Our first aim is to study the excitation specbum of the VBS model numerically, using a 
periodic boundary condition. The symmetry properties of the Hamiltonian in (1) allow us 
to classify the eigenstates according to their total spin ST, its component along the z axis S+, 
and the momentum k = k l / N  ( I  integer) of the states, where N is the length of the chain. 
We computed several low-lying eigenvalues of the Hamiltonian for each possible value of 
k, using a LAnczos algorithm, and also determined the total spin of the states. Chains with 
an even number of sites up to N = 16 were considered. 

Figure 1 shows the six lowest eigenvalues for all k in our longest chain with N = 16. 
For some of the energies the total spin quantum number ST is also given. It is seen that, 
in NI agreement with all previous results [2], the lowest excited state (denoted by A )  is 
an ST = 1 state with momentum k = z, Moreover, in the whole range Ik( 2 n/2 the 
lowest-energy excited states have the same total spin ST = 1. In the thermodynamic limit, 
these states, as a function of k ,  seem to form a continuous branch of excitations. In fact, 
according to the general theorem we proved in [6], an excitation with ST > 1 cannot remain 
isolated in the N -+ 00 limit. 

On the other hand near k = K, the energies of the next-higher-lying excitations are 
situated at a distance from the triplet branch that is much greater than their average energy 
difference from each other. This behaviour indicates that in the infinite-chain limit, at least 
near k = K, the lowest triplet excitations do not belong to a continuum. The existence of 
such a discrete branch below the higher-lying continuum Seems to be another characteristic 
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feature of the non-integrable integer-spin models. Unlike the integrable spin models and 
general spin models of half-integer S,  the lowest-lying excitations in the Haldane phase are 
real one-particle spin-l excitations. They cannot be decomposed into S = 1/2 solitons. 

G F&th and J Sblyom 

1.2 

0.4 

k 
Figure 1. Low-lying eigenvalues of lhe YBS model plotled againsl momentum k. for a chain 
with N = 16 siter. Labels denole the total spin ST of the stares. The broken curve show the 
energy of the vial state with the moving hidden soliton. 

Above the triplet branch, the higher-lying excitations of the VBS model seem to be 
‘dense’ for all k ,  supposedly forming a continuum. They probably cannot be described by 
a single parameter. For N = 16, the triplet branch merges into this continuum somewhere 
below k - n/2. Near k = 0 there is no sign of a discrete branch; here, the lowest-lying 
excitations are thought to belong to the continuum. 

There is another remarkable feature that can be observed in our finite-chain calculation. 
The gap AB to the lowest excited state of the k = 0 subspace is approximately twice the 
singlet-triplet gap A A  at k = IT. The same property was observed by Takahashi [13] for 
the pure Heisenberg chain ,3 = 0. Similarly, the gap A c  between the ground state and the 
second excited state in the k = IT sector seems to be three times as large as the singlet- 
triplet gap. It is also noteworthy that state B (the lowest k = 0 excited state) is a quintuplet 
(ST = 2) state and C (the second lowest k = IT excited state) is a state with S, = 3. The 
physical picture behind such a behaviour is simple. The excitations near k = 0 can be 
composed of two low-lying excitations near k = n and, similarly, three excitations near 
k = IT can be combined to give another excitation near k = IT. 

Whether or not the spectrum has this property in the N + 00 limit was tested by 
extrapolating the finite-size calculations to infinitely long chains. In figure 2 the gaps AA. 
A B  and AC are plotted as a function of 1/N. The convergence to the thermodynamic limit 
is very fast, especially for A h .  Using standard extrapolation methods, the limiting values of 
thethreequantitiesare A,, =0.350124f10-6, A ~ = 0 . 7 1 f 0 . 0 1  and Ac = 1.09f0.03. 
respectively. As is seen, the ratios give the anticipated values 1 : 2 : 3 within an error of 
4%. 
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1 /N 
Fire 2. Energy gaps AA. As12 and Ac/3 plolted against 1 / N .  Broken C U N ~ S  indicate the 
suggested large-N behaviour. D shows the energy of the Mal wavefunction at k = I. 

This numerical calculation supports rather convincingly the idea that the elementary 
excitations of the model form a discrete triplet branch, which is separated from the multi- 
particle continuum in a wide range around k = n. Analysing the lower boundary of this 
multi-particle continuum, it seems very likely that the two-particle states near k = 0 are 
essentially scattering states of two elementary excitations. The energy and momentum of 
such a multi-particle state is then simply the sum of the energies and momenta, respectively, 
of the two pasticles. The situation is similar for the three-particle states near k = x .  In 
the numerical calculation there does not seem to be any sign of bound states below the 
scattering continuum. 

3. Trial wavefunctions for the elementary excitations 

In this section we will study the elementary excitations of the VBS model analytically. We 
will see that it is possible to reproduce the dispersion relation of the discrete triplet branch 
quite precisely by assuming simple trial wavefunctions. It will be argued that the elementary 
excitations me (hidden) solitons that destroy the hidden order of the ground state. 

First, we recall the form of the ground-state wavefunction. As was mentioned in 
section 1, the ground state of the VBS model can be constructed analytically using nearest- 
neighbour valence bonds. For this, an S = 1 operator will be composed of two S = 112 
operators. Taking the tensor product of the two spin-l/;? spaces, a new orthogonal basis at 
site i [31 is constructed in the form 

+$ = t ~ u  Q * B  + % Q !kl/Z/z (4) 
where ll.u and @p represent the eigenstates of the two spin-I/;? operators and the greek 
indices take the values t and J.. There are three independent symmetric combinations 
corresponding to the three eigenstates of the spin-1 operator, IO)(, and I-)[ with 
S; = I ,  0 and - 1, respectively, 
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The fourth orthogonal state that completes the basis is the antisymmetric combination 
corresponding to an S = 0 state at site i .  This configuration will be excluded. 

The ground-state wavefunction of an open chain of length N can be written in terms of 
these s tam as [3] 

G F4th and J S6Iyom 

(6) 

Here and in what follows summation is over repeated indices; &@ is an antisymmetric tensor 
with = -eLt = 1. At both ends of the chain there is a loose spin-ln degree of freedom, 
denoted by L Y ,  and @N. Since both can assume any of the two eigenstates independently, the 
ground state is fourfold degenerate. Three of these states constitute the three components 
of a spin triplet, while the fomh state is a spin singlet. It was shown, however, that these 
four ground states converge to the same infinite volume limit as N -+ CO. 

A unique ground state can be formed even for finite N in the case of a periodic boundary 
condition by antisymmetrizing the two loose end-spins. The ground-state wavefunction can 
be written as 

N 
G ( f f l ,  B N )  = $~,#,&P'ur*~2~&*u3 . . . $L,fi&.NB'e'iil . . . *.XL.NBM' 

a = R(cft, BN)&'""'. (7) 

Note that these states are not normalized: IlO(Orl.BN)II' = f3N + O ~ I )  and IIOII' = 
3N+U(I) .  

The term 52 has the interesting property that the configurations appearing in 52 look, in 
the conventional S2 representation, like 

... o + o  ... 0 - 0 . .  .o+o...o-o...  (8) 

i.e. each + is followed by a - with an arbitrary number of 0 states between, and vice 
versa. This is nothing but a dilute spin-1j2 N k l  antiferromagnet, where the Os represent 
a background and the + and - states denote the two possible degrees of freedom of a 
spin-ln particle. As is seen, the hidden N6el order is perfect for the VBS ground state. For 
this case the string order parameter of den Nijs and Rommelse is [8] O%,(HVSS) = g, 
LY = x ,  y,  z. Moving away from the VBS point, quantum fluctuations begin to destroy the 
above structure of a. However, the hidden long-range order, characterized by U& > 0, 
LY = x ,  y ,  z, is expected to persist in a wide region, in the whole Haldane phase [9]. 

As for the excited states of the VBS model our knowledge is much less accurate, since 
the eigenfunctions cannot be constructed in a similarly rigorous way. Recently, however, 
two seemingly rather different trial wavefunctions were proposed to describe elementary 
excitations in the model. Amvas and co-workers [14] proposed the form 

4 

and obtained 

for the dispersion relation of the excitations. As is seen from figure 2, the variational ansatz 
yields an upper bound AA < $ = 0.3704, very close to the real excitation gap obtained 
from the finite-size calculation at k = a. 
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The dispersion relation (10) is plotted in figure 1 with a broken curve. Comparison with 
the numerical results suggest that the trial wavefimction Ik) gives a reasonable description 
of the elementary excitations not only at k = IC, but in a large region of the Brillouin zone, 
in the range Ikl 2 ~ / 2 .  Below that, in the region near k'= 0, the two-particle scattering 
continuum dominates the spectrum. 

Looking at the form of the trial wavefunction in (9). one is tempted to interpret the 
elementary excitations as magnons. Note, however, that although these 'magnons' would 
not destroy a conventional long-range order, they do destroy the hidden order. This is 
directly seen if we use, for example, the fi = + component in (9). In ST51 only those 
configurations appear that look like 

... 0-0 ... O + O  ... 0+0 ... 0 - 0  ... o+o  ... (1 1) 

i.e. the N&l order of the non-zero components is broken at one point. In the dilute 
antiferromagnetic picture this is nothing else but a usual antiferromagnetic soliton embedded 
in the background of Os. Such a soliton, unlike a magnon, destroys the long-range order, 
in this case the hidden antiferromagnetic order corresponding to O&,. 

The solitonic nature of SfS2 is much less obvious at first sight, since in this case the 
hidden Ndel order of (8) seems to remain intact. However, as will be illustrated in section 5, 
now the hidden order in the transverse directions (i.e. OCs and O&) will be. destroyed. 

In an altemative approach Knabe. [I51 proposed the following construction for the 
elementary excitations. Let us retain the valence-bond structure of 51 for every bond except 
that between sites j and j + 1. where the two spin-112 degrees of freedom Bj and aj+l are 
symmetrized to form a triplet bond, instead of the antisymmetrized singlet bond. 

To make this construction more explicit, divide the sites of the chain into two sets: 
C. = ( I ,  2 . .  . . , j ]  and 'R = [ j + l ,  j + 2 , .  . . , N). We define first the states C$'jp'"(al, BN), 
with B j ,  9+1 =?, .1 and 1 < j c N, as explicit tensor products of two arbitrary ground 
states, one on 1: and the other on 'R, respectively, as 

(12) 

Obviously, the ground state of the full chain can be obtained by antisymmetrizing with 
respect to 'yi and Bj+l,  i.e. by connecting the 13 and 'R sides with a singlet valence bond 

Q @ l , B N )  = ~~'(al,BN)-~~~(a,,BN). (13) 

@!,.9+r 
I (011. BN) = Q,(at, Bj)  @ Qn(aj+l, BN). 

On the other hand, symmetrization with respect to a, and defines three new states: 

@y(ffl- BN) = @fl(al, BN). (16) 

In these states the singlet valence bond between sites j and j + 1 is substituted by a triplet 
bond This adds an extra spin-1 degree of freedom to the two free spin-li2 variables in the 
ground states of the open chain. The factor I/& is introduced in C$' to ensure that the 
states have the same norm, Il@;(ai, BN)II* = $3N + U(1). a = +, 0, -, as N + W. 
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In the case of periodic boundary condition, the two loose spin-l/Z degrees of *eedom 

ay = @;(a,, BN)EoN)=l a=+,o,- (17) 

for I < j < N - 1. The state a$, in which the spin-I bond connects the last and first sites, 
N and I ,  is defined analogously. Unlike the case of an open boundary condition, now the 
total spin of the three states a;. a = +,O, -, is necessarily ST = 1 with S+ = + I ,  0, -1, 
respectively, since all the other antisymmetrized bonds have zero spin. 

These states again have a soliton-like nature, just as in the other approach mentioned 
above. The term a;, for example, can be explicitly written as 

(18) a+ = , , , Epl-z.+,*i-L E i % L u l ~ i  * j+1 @,+m+? j + z  Eh+w+3 , . , , 

In each non-zero configuration the subscripts pi and ai+l are antiparallel except for i  = j ,  
for which Bj = =t. Transforming this into the standard S, representation, the nearest 
non-zero spin states on the left- and right-hand side of the triplet bond are necessarily + 
states. Otherwise the Nee1 order of the + and - states is complete on both sides. 

As a variational nnsatz, b a b e  [I51 analysed a general linear combination of the O; 
states, cy=, cia; and found that the energy is minimized if cj = (- 1)j. For the primary gap 
of the model he obtained an upper bound in the form A A  < % 0.3571. Comcting a small 
obvious mistake in the numerics of his paper, the correct upper bound is 10/27 = 0.3704, 
exactly as in [14]. 

It is quite straightforward to generalize this calculation to arbitrary momentum k. 
Looking for translationally invariant trial wavefunctions, we define 

at the chain ends should again be contracted with an E tensor. This defines the functions 

J U,-,&, =,it tSI+I *al+*oI+z 

Knabe’s wavefunction corresponds to k = z. With OUT definition of the (unnormalized) 
trial wavefunctions a!, a = +, 0, -. Knabe’s results can be re-expressed in the following 
form: 

( ~ p p “ )  1 2  = i p ” - $ ) l j - J ’ l +  ~ ( 1 )  

(@pvssl@y,} = 4 j 4 3 N  + U(1). 

(20) 

and 

(21) 

Using these results, it is now straightforward to calculate the normalization of the 
translationally invariant states W(k) defined by (19) and the expectation value of the energy 
in these states. In the thermodynamic limit we get 

and 
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whence the dispersion of the excitations is again 

This dispersion is exactly the same as that obtained by Arovas and co-workers in (9). 
Despite the different forms of the wavefunctions, the identical result for the dispersion 
relation indicates a deep connection between the two approximations. In fact, it is not too 
difficult to show that S!\Q) can be expressed in a simple form with our @; configurations: 

therefore Ik) differs from W ( k )  in a constant factor only, which is cancelled when the 
expectation value of the energy is taken. 

One may ask the following question: which construction of the above two should now 
be considered as the elementary excitation? Equations (25) and (26) show that SylQ) is a 
simple linear combination of the 0; configurations. The reverse, however, is not true: 0; 
cannot be expressed with Sj"lC2) in a similarly simple way. Therefore, one should conclude 
that the elementary excitations are in fact the moving triplet bonds. 

4. The Kennedy-Tasaki transformation 

A better picture of the above described elementary excitations of the VBS model can be 
obtained by using the non-local unitary transformation U of Kennedy and Tasaki [lo]. This 
transforms the antiferromagnetic Hamiltonian into a ferromagnetic-like model and makes 
explicit the Zz x 2 2  symmetry breaking in the ground state. First we recall some features 
of this transformation, then show that the above trial wavefunctions transform under U into 
simple explicit domain walls. A small inconvenience, wising from the non-local character 
of the transformation. is that it can only be used conveniently on chains with open boundary 
conditions. Note, however, that we do not seek exact solutions but variational results only, 
so the boundary condition will have no relevance for long enough chains. 

We define the unitary U in the usual way [IO]: let Is) = ISI, s2, . . . , s N )  denote a basis 
state in the S2 representation, where si = +, 0, - stands for the eigenvalues + I ,  0, -1. 
respectively of Sf. Introducing new variables by 

the spin configurations can be given as IS) = 151, $2, . . . , SN). Note that in lq all the Os of 
Is) remain unchanged, while a + or - at site i is flipped or remains unchanged, depending 
on whether the number of + and - on sites 1 < l -= i is odd or even. The unitary U is 
then defined by 

where M(s) denotes the number of odd sites i on which si = 0. 
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Let us consider now the VBS Hamiltonian. It can be shown [lo] that hi, j = 
1.. . . , N - I, transforms under U in a relatively simple (local) way into 

1 -2 1 
3 -3 

-3 3 
6 

-2 4 -2 
6 

3 -3 
-3 3 

1 -2 1 

This, however, does not hold for hN. i.e. for the term that couples the last and the first 
spins of the chain; R N  = UhNU-' cannot be written in a similar form, moreover it does not 
remain local either. Thisproblem can, however, be avoided if we switch to open boundary 
conditions. In this case HVBS is simply 

The diagonalization of the above two-site Hamiltonian Rj  shows that its ground-state 
U = I ,  2,3 ,4  sector with zero energy is four dimensional and is spanned by the states 

(here no summation is meant over v). where the singlesite states are 

Note that this basis is not orthogonal, since [ ( @ v , l @ v ) l  = 1/3, U' $; U. 

product of the above-introduced single-site states: 
The ground states of an open chain with N sites can simply be written as the tensor 

(35) 

These wavefunctions and the ground-state wavefunctions described in (6) can be easily 
related. On an L-site lattice any linear combinations of the Yv are ground states. Such a 
linear combination is obtained if U acts directly on the ground state Q(a1, BL) of HVSS. 
For all the configurations in Q (al. BL), the value of al decides unequivocally the sign of 
the first non-zero spin (if a1 =f then it should be a +) and then for a given value of L, 
BL fixes the parity of the total number of non-zero spins. Using these two observations, the 
following relations can easily be worked out: 

0. = @; @@; 0 . .  .@" N - '  @@: U =  1,2,3,4. 
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where [ L / 2 ]  denotes the integer part of Lj2 .  
It can be shown rigorously that the four states in (35) remain the only ground states as 

N + W. and they converge to four different infinite-volume ground states. Note that the 
ground-state degeneracy of the original and transformed Hamiltonians differ in the infinite- 
volume limit. This is a consequence of the non-locality of U.  

The states in (35) have long-range order reflecting the spontaneous breaking of a Zq x Z, 
symmetry, the only explicit (local) symmetry of Hvi,ss. I n d u c i n g  the ferromagnetic order 
parameter of the transformed system 

(40) oE,(A) = lb-jl-xm lim f i ( q ~ 7 ) r i  a = x ,  y, z 

one obtains that 

O&JA) = fi(sp,$ = $ CY = x ,  2. (41) 

While f i ( S : ) i  = +f for 'U1 and WZ, we find fi(Sf)fi = -f for Y, and Ur,. Similarly, 
f i (S : ) f i  = +$ for W, and W3 and f i ( S ; ) ~  = -a for Vz and W+ The appearance of the 
long-range order in the transformed Hamiltonian corresponds to a non-vanishing value of 
the string order parameter in the original system, since by the equivalence 

0:""p) = OE" CY = x ,  7. (42) 

the string order transforms into a ferromagnetic order under U [IO]. This equivalence does 
not hold for the y component. 

5. Solitons in the Kennedy-Tasaki transformation 

Our aim now is to show how our soliton configurations 07, a = +, 0, - transform under 
the unitary transformation. It will be found that in the transformed model they are explicit 
domain walls separating regions with different ground states W V .  Since we work now with 
open boundary conditions, the two loose spin-1/2 variables at the left and right chain ends 
should be retained explicitly. 

For this purpose, we cut the chain into L and R parts as in section 3 and define new 
unitary operators. Since a configuration Is) can be written as an explicit tensor product of 
the left and right states 

(43) ~ I I S Z , .  . , > SN) = Is1,SZ.. . I T  s j )  8 ISj+i,sj+Z. .I. 7 SN) 

the action of U on Is) can be given in the form 

(44) ubl,sZ,...,sN) = u j  c ISI.SZ ...., Sj}~U~ISj+l,Sj+Z,...,SN). 

uj C Is,, sz, . . . , Sj) = ( - l p q & , ? Z , .  . . ,?j) 

Here 

(45) 

(46) 

with IF) defined by (27); M&) (Ma@)) is the number of odd sites for which si = 0 and 
i E L: (i E 72). Obviously M&) + 

- u?lSj+l,sj+Z ,...,SN) = (-1)"'"'I~j+l,sj+Zr ..., SN) 

= MO). 
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It is seen that in general the effect of u,F on ~sj+l, sj+Z, . . . , s N )  cannot be calculated 
without some explicit knowledge of the configuration on C since, for example, the first 
non-zero spin of R is flipped according to whether the parity of the number of non-zero 
spins of C is even or odd. Therefore, we define another uNW ";". that will be independent 
of C, in the following way: 

where 

i 2 j + I 

and K d s )  is the number of sites i for which i - j is add and si = 0. Note that the definition 
of V," is nothing else but that of U, if the sites of the chain are relabelled as i i - j .  
TO illustrate the above definitions, compare the following examples: 

I + o +  -0) OU,al-oo- + +O) = -I +0+ -0) @ I +oo- - +O) 
I + o+  -0) 0 v:1-00- +CO) = I + o +  -0) @ I  -oo+ + - 0)  

I +o+  -0-) @ U,aloo- + +O) = -I +0+ -0-) @ loo - -+ 0) 

I +o+  -0-) 8 V,RlOo- ++O) = - 1  + O f  -0-) 63 100 - - + O ) .  

U? = p(s)P(s)!q2 (49) 

It is easy to see that in general U;" can be expressed by Vp as 

where p(s )  = f l  is a sign factor and P(s) is either the identity operator or a general 
spin-flip si + -sir j +  1 < i 6 N, on R. To be more specific, let us introduce the notation 
Q d s )  for the number of sites i (i E L) for which si = & l ,  and similarly introduce Q&) 
for i E R. For the operator P, we simply get 

identity Q&) = even I spin-flip Q&) = odd. 
P(s )  = 

As for the sign factor p, it is trivially +l if j = even, while for j = odd it is 

p ( s )  = ( - ] ) h i s l - K ~ i ~ )  = (_I)MRIJ)+KE(S) = (-1)N-j-QRW = -(-i)N-QnW 

(51) 

since far odd j ,  K&) counts the Os on even sites and thus M&) + K&) is the total 
number of Os on R. 

Let us consider now the states O?'"*'(al, B N ) .  P j ,  aj+~ =t, .1, where the valence bond 
between sites j and j + I is simply removed. From (12) and (44) 

(52) 
u o + 9 + L  , @ I . B N )  = ~ / ~ ~ L ( ~ I , B ~ ) @ L I , F R R ( ( Y ~ + I , B N ) .  

Then, using (49) we obtain 

(53) 
*Fi , .Y+1 (ai, B N )  = U$L(alsPj)O pPVJ%(ajtl,BN). 
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The expressions for U,hr (a l ,  8,) and yR!2R(aj+l, &) can be read off directly from ( 3 6 t  
(39). using the fact that the number of sites in the left part is L = j ,  while it is L = N - j 
in the right part. Care has to be taken in the proper account of p and P. Remember that 
these depend on the actual configurations Is). However, fixing a1 and ,!I,, the parity of 
Q&) is uniquely determined for all the possible configurations in !2c(a1, Bj). Without 
any loss of generality we will fix the leftmost spin-lD variable to (11 =? and suppose that 
N =even. Then Qr(s)=odd and thus P is a spin-flip (compare with (50)) if and only if 
Bj =?. Similarly, the parity of Qa(s) is uniquely determined by a,+, and B N .  From (51) 
we easily get 

Using the above results and the fact that a spin flip hansforms 
and vice versa, one straightforwardly obtains the following relations: 

+ Y3, W2 + 
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What we obtained is nothing else but a linear combination of the simplest domain walls 
'4; f3 YF, U # U'. between sites j and j + 1. By virtue of the S U ( 2 )  symmetry of HVSS 
and the open boundary condition, it is possible to consider some linear combinations of the 
above states in order to get the simplest forms on the right-hand sides, for example 

U(@$(t. $1 + q ( t .  t) -e;(?, L) - OX?, t)) = (-)j(-3)N/2Yf c3 YF 

G Fdth and J Sblyom 

(69) 

U(@$(t, L) - q t ,  t) + q(t .  4.) - a;(?, t)) = ( - ) j ( - 3 Y W  f3 Y,R (70) 

U(@;(?, $1 - $(t, T.1) = (1/%b(-3)N'2Yf c3 Yp. (71) 

Three other similar linear combinations can be composed with Yl f3 YF, U = 1,3,4, on 
the right-hand side. These final forms clearly demonstrate the solitonic nature of our trial 
wavefunctions. Note that in accordance with the three degrees of freedom of such a spin-l 
soliton, there are three kinds of domain walls. For Yf f3 Yp (Yl c3 Y,") only ,i(S;)k 
changes sign as we move from the left region to the right; g(S:),q does not change. The 
situation is just the opposite for Yf f3 YF (Y{ c3 Yp). Here only ,i(Sf)i flips. Then for 
Yf 63 Y," (Y{@ Yp) the expectation values of the magnetization in both directions change 
sign. 

Now it is easy to see how 0: (or S;Q. recalling (25)) destroys the hidden order O&,,g 
(and by symmetry OitiDg) which was anticipated in section 3. For definiteness, we fix the 
boundary spins 011 =?, f i ~  =t (other choices can be worked out similarly) and consider 
the expectation value 

In the case when j < n or j > m, i.e. n and m are in the same domain, the domain wall 
has no effect and the expectation value is 4/9. On the other hand, when n r: j < m, it is 
straightforward to obtain, using the Kennedy-Tasaki transformation, the following result in 
the thermodynamic limit: 

( q t ,  t)lu;,ml@;(t, t)) - - ( u q t ,  t)ls;s:luq(t, t)) 
I lq( t .  t)1I2 Iluq(T3 t)l? 

where we used (64) and the asymptotic orthogonality of the different ground states 
l(Yu*lYu)l -+ 0 (U' # U) if N + CO. In fact, the presence of the domain wall flips 
the expectation value of U&. 

Finally, we show that in this formalism the dispersion relation of (10) can be obtained 
in a very elegant way. We can start, for example, from the trial wavefunction 

with l j )  = ~ I f 3 ~ :  c 3 . . . ~ : ' f 3 ~ ~ ' c 3 ~ ~ c 3 . , . ~ ~ .  In this form k isavariationalparameter 
rather then a momentum, because of the open boundary condition. In the thermodynamic 
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limit, however, the boundary condition should not matter (although it might bring a constant 
momentum shift q in the final result, since we have the freedom to redefine I j )  with for 
example an arbitrary phase factor l j )  4 eiqj I j ) ) ,  and the variational energy as a function 
of k is in fact the dispersion of the excitations in this simpleg domain wall approach. 

The computation would proceed similarly to that in the previous section. As we have 
seen there, the important quantities are (jlj‘) and (jlkmslj’). However, in this case they 
are trivial because of the tensor product form. A straightfowd calculation gives 

where we used the fact that (@,[&) = (&I&) = 1 and ($q1&) = -1/3 and in a similarly 
simple way 

which is easily obtained from the explicit form of the two-site Hamiltonian 5. Apart from 
a factor of 3 N / 2  these results are identical to those in (20) and (21). Therefore, they also 
lead to the same dispersion E ( & ) .  

6. Conclusions 

In summary, we studied the elementary excitations in the valence-bond point of the S = 1 
bilinear-biquadratic model. Numerical calculations on finite-size systems were used to 
predict the spectrum in the thermodynamic limit. The lowest-lying excited states above the 
k = 0 singlet ground state form a discrete triplet branch with a minimum at k = A. Near 
this minimum this branch is separated from the higher-lying scattering continuum. The 
energy needed to excite the lowest k = 0 excitation was found to be twice the gap value at 
k = A. Similarly, the energy of the next lowest excitation at k = A is three times the gap 
value. These excitations belong to the continuum and can be interpreted as being composed 
of two or three S = 1 elementary excitations. 

Comparison with the numerical results show that the separate branch of excitations can 
be reasonably described with a trial wavefunction, where one singlet bond is replaced by 
a moving triplet bond. In the representation where :he configurations are given in terms 
of the Sz eigenstates of the spins, a triplet band in the sea of singlet bonds has a solitonic 
character. In the dilute system of + and - spin states there is a single domain wall. While 
this feature is hidden in the usual valence-bond description, it becomes apparent when the 
non-local Kennedy-Tasaki transformation is used. We have shown that the approximate 
wavefunctions of the excited states transform into explicit domain walls in the transformed 
system. 
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